Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation.

Identifieur interne : 000249 ( Main/Exploration ); précédent : 000248; suivant : 000250

In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation.

Auteurs : Enrico Luchinat [Italie] ; Lucia Banci [Italie]

Source :

RBID : pubmed:29869502

Descripteurs français

English descriptors

Abstract

Cellular structural biology methods are needed to characterize biological processes at atomic resolution in the physiological environment of the cell. Toward this goal, solution in-cell NMR is a powerful approach because it provides structural and dynamic data on macromolecules inside living cells. Several approaches have been developed for in-cell NMR in cultured human cells, which are needed to study processes related to human diseases that rely on the delivery of exogenous macromolecules to the cells. Such strategies, however, may not be applicable to proteins that are sensitive to the external environment or prone to aggregate and can introduce artifacts during protein purification or delivery. As a complementary approach, direct protein expression for in-cell NMR in human cells was developed. This strategy is especially useful when studying processes like protein folding, maturation, and post-translational modification, starting right after protein synthesis. Compared with the protein expression techniques in mammalian cells commonly used in cellular biology, the low sensitivity of NMR requires higher protein levels. Among the cell lines used for high-yield protein expression, the HEK293T cell line was chosen, as it can be efficiently transfected with a cost-effective reagent. A vector originally designed for secreted proteins allows high-level cytosolic protein expression. For isotopic labeling, commercially available or homemade labeled media are employed. Uniform or amino acid type-selective labeling strategies are possible. Protein expression can be targeted to specific organelles (e.g., mitochondria), allowing for in organello NMR applications. A variant of the approach was developed that allows the sequential expression of two or more proteins, with only one selectively labeled. Protein expression in HEK293T cells was applied to recapitulate the maturation steps of intracellular superoxide dismutase 1 (SOD1) and to study the effect of mutations linked to familial amyotrophic lateral sclerosis (fALS) by in-cell NMR. Intracellular wild-type SOD1 spontaneously binds zinc, while it needs the copper chaperone for superoxide dismutase (CCS) for copper delivery and disulfide bond formation. Some fALS-linked mutations impair zinc binding and cause SOD1 to irreversibly unfold, likely forming the precursor of cytotoxic aggregates. The SOD-like domain of CCS acts as a molecular chaperone toward mutant SOD1, stabilizing its folding and allowing zinc binding and correct maturation. Changes in protein redox state distributions can also be investigated by in-cell NMR. Mitochondrial proteins require the redox-regulating partners glutaredoxin 1 (Grx1) and thioredoxin (Trx) to remain in the reduced, import-competent state in the cytosol, whereas SOD1 requires CCS for disulfide bond formation. In both cases, the proteins do not equilibrate with the cytosolic redox pool. Cysteine oxidation in response to oxidative stress can also be monitored. In the near future, in-cell NMR in human cells will likely benefit from technological advancements in NMR hardware, the development of bioreactor systems for increased sample lifetime, the application of paramagnetic NMR to obtain structural restraints, and advanced tools for genome engineering and should be increasingly integrated with advanced cellular imaging techniques.

DOI: 10.1021/acs.accounts.8b00147
PubMed: 29869502


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation.</title>
<author>
<name sortKey="Luchinat, Enrico" sort="Luchinat, Enrico" uniqKey="Luchinat E" first="Enrico" last="Luchinat">Enrico Luchinat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Magnetic Resonance Center - CERM , University of Florence , 50019 Sesto Fiorentino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Magnetic Resonance Center - CERM , University of Florence , 50019 Sesto Fiorentino</wicri:regionArea>
<wicri:noRegion>50019 Sesto Fiorentino</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Experimental and Clinical Biomedical Sciences "Mario Serio" , University of Florence , 50134 Florence , Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Biomedical Sciences "Mario Serio" , University of Florence , 50134 Florence </wicri:regionArea>
<wicri:noRegion>50134 Florence </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Banci, Lucia" sort="Banci, Lucia" uniqKey="Banci L" first="Lucia" last="Banci">Lucia Banci</name>
<affiliation wicri:level="1">
<nlm:affiliation>Magnetic Resonance Center - CERM , University of Florence , 50019 Sesto Fiorentino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Magnetic Resonance Center - CERM , University of Florence , 50019 Sesto Fiorentino</wicri:regionArea>
<wicri:noRegion>50019 Sesto Fiorentino</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry , University of Florence , 50019 Sesto Fiorentino , Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Chemistry , University of Florence , 50019 Sesto Fiorentino </wicri:regionArea>
<wicri:noRegion>50019 Sesto Fiorentino </wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29869502</idno>
<idno type="pmid">29869502</idno>
<idno type="doi">10.1021/acs.accounts.8b00147</idno>
<idno type="wicri:Area/Main/Corpus">000235</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000235</idno>
<idno type="wicri:Area/Main/Curation">000235</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000235</idno>
<idno type="wicri:Area/Main/Exploration">000235</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation.</title>
<author>
<name sortKey="Luchinat, Enrico" sort="Luchinat, Enrico" uniqKey="Luchinat E" first="Enrico" last="Luchinat">Enrico Luchinat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Magnetic Resonance Center - CERM , University of Florence , 50019 Sesto Fiorentino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Magnetic Resonance Center - CERM , University of Florence , 50019 Sesto Fiorentino</wicri:regionArea>
<wicri:noRegion>50019 Sesto Fiorentino</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Experimental and Clinical Biomedical Sciences "Mario Serio" , University of Florence , 50134 Florence , Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Biomedical Sciences "Mario Serio" , University of Florence , 50134 Florence </wicri:regionArea>
<wicri:noRegion>50134 Florence </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Banci, Lucia" sort="Banci, Lucia" uniqKey="Banci L" first="Lucia" last="Banci">Lucia Banci</name>
<affiliation wicri:level="1">
<nlm:affiliation>Magnetic Resonance Center - CERM , University of Florence , 50019 Sesto Fiorentino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Magnetic Resonance Center - CERM , University of Florence , 50019 Sesto Fiorentino</wicri:regionArea>
<wicri:noRegion>50019 Sesto Fiorentino</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry , University of Florence , 50019 Sesto Fiorentino , Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Chemistry , University of Florence , 50019 Sesto Fiorentino </wicri:regionArea>
<wicri:noRegion>50019 Sesto Fiorentino </wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Accounts of chemical research</title>
<idno type="eISSN">1520-4898</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amyotrophic Lateral Sclerosis (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Copper (metabolism)</term>
<term>Escherichia coli (metabolism)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Isotope Labeling (MeSH)</term>
<term>Magnetic Resonance Spectroscopy (methods)</term>
<term>Mitochondrial Membrane Transport Proteins (metabolism)</term>
<term>Molecular Chaperones (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Nitrogen Isotopes (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Deglycase DJ-1 (chemistry)</term>
<term>Protein Deglycase DJ-1 (metabolism)</term>
<term>Protein Folding (MeSH)</term>
<term>Superoxide Dismutase-1 (chemistry)</term>
<term>Superoxide Dismutase-1 (genetics)</term>
<term>Superoxide Dismutase-1 (metabolism)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules HEK293 (MeSH)</term>
<term>Chaperons moléculaires (métabolisme)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Cuivre (métabolisme)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Isotopes de l'azote (MeSH)</term>
<term>Marquage isotopique (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Protein deglycase DJ-1 (composition chimique)</term>
<term>Protein deglycase DJ-1 (métabolisme)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéines de transport de la membrane mitochondriale (métabolisme)</term>
<term>Sclérose latérale amyotrophique (génétique)</term>
<term>Spectroscopie par résonance magnétique (méthodes)</term>
<term>Superoxide dismutase-1 (composition chimique)</term>
<term>Superoxide dismutase-1 (génétique)</term>
<term>Superoxide dismutase-1 (métabolisme)</term>
<term>Zinc (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Protein Deglycase DJ-1</term>
<term>Superoxide Dismutase-1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Superoxide Dismutase-1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Copper</term>
<term>Mitochondrial Membrane Transport Proteins</term>
<term>Molecular Chaperones</term>
<term>Protein Deglycase DJ-1</term>
<term>Superoxide Dismutase-1</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protein deglycase DJ-1</term>
<term>Superoxide dismutase-1</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amyotrophic Lateral Sclerosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Sclérose latérale amyotrophique</term>
<term>Superoxide dismutase-1</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Spectroscopy</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Cuivre</term>
<term>Escherichia coli</term>
<term>Protein deglycase DJ-1</term>
<term>Protéines de transport</term>
<term>Protéines de transport de la membrane mitochondriale</term>
<term>Superoxide dismutase-1</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Spectroscopie par résonance magnétique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Isotope Labeling</term>
<term>Mutation</term>
<term>Nitrogen Isotopes</term>
<term>Protein Conformation</term>
<term>Protein Folding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HEK293</term>
<term>Conformation des protéines</term>
<term>Humains</term>
<term>Isotopes de l'azote</term>
<term>Marquage isotopique</term>
<term>Mutation</term>
<term>Pliage des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellular structural biology methods are needed to characterize biological processes at atomic resolution in the physiological environment of the cell. Toward this goal, solution in-cell NMR is a powerful approach because it provides structural and dynamic data on macromolecules inside living cells. Several approaches have been developed for in-cell NMR in cultured human cells, which are needed to study processes related to human diseases that rely on the delivery of exogenous macromolecules to the cells. Such strategies, however, may not be applicable to proteins that are sensitive to the external environment or prone to aggregate and can introduce artifacts during protein purification or delivery. As a complementary approach, direct protein expression for in-cell NMR in human cells was developed. This strategy is especially useful when studying processes like protein folding, maturation, and post-translational modification, starting right after protein synthesis. Compared with the protein expression techniques in mammalian cells commonly used in cellular biology, the low sensitivity of NMR requires higher protein levels. Among the cell lines used for high-yield protein expression, the HEK293T cell line was chosen, as it can be efficiently transfected with a cost-effective reagent. A vector originally designed for secreted proteins allows high-level cytosolic protein expression. For isotopic labeling, commercially available or homemade labeled media are employed. Uniform or amino acid type-selective labeling strategies are possible. Protein expression can be targeted to specific organelles (e.g., mitochondria), allowing for in organello NMR applications. A variant of the approach was developed that allows the sequential expression of two or more proteins, with only one selectively labeled. Protein expression in HEK293T cells was applied to recapitulate the maturation steps of intracellular superoxide dismutase 1 (SOD1) and to study the effect of mutations linked to familial amyotrophic lateral sclerosis (fALS) by in-cell NMR. Intracellular wild-type SOD1 spontaneously binds zinc, while it needs the copper chaperone for superoxide dismutase (CCS) for copper delivery and disulfide bond formation. Some fALS-linked mutations impair zinc binding and cause SOD1 to irreversibly unfold, likely forming the precursor of cytotoxic aggregates. The SOD-like domain of CCS acts as a molecular chaperone toward mutant SOD1, stabilizing its folding and allowing zinc binding and correct maturation. Changes in protein redox state distributions can also be investigated by in-cell NMR. Mitochondrial proteins require the redox-regulating partners glutaredoxin 1 (Grx1) and thioredoxin (Trx) to remain in the reduced, import-competent state in the cytosol, whereas SOD1 requires CCS for disulfide bond formation. In both cases, the proteins do not equilibrate with the cytosolic redox pool. Cysteine oxidation in response to oxidative stress can also be monitored. In the near future, in-cell NMR in human cells will likely benefit from technological advancements in NMR hardware, the development of bioreactor systems for increased sample lifetime, the application of paramagnetic NMR to obtain structural restraints, and advanced tools for genome engineering and should be increasingly integrated with advanced cellular imaging techniques.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29869502</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4898</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>51</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2018</Year>
<Month>06</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Accounts of chemical research</Title>
<ISOAbbreviation>Acc Chem Res</ISOAbbreviation>
</Journal>
<ArticleTitle>In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation.</ArticleTitle>
<Pagination>
<MedlinePgn>1550-1557</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.accounts.8b00147</ELocationID>
<Abstract>
<AbstractText>Cellular structural biology methods are needed to characterize biological processes at atomic resolution in the physiological environment of the cell. Toward this goal, solution in-cell NMR is a powerful approach because it provides structural and dynamic data on macromolecules inside living cells. Several approaches have been developed for in-cell NMR in cultured human cells, which are needed to study processes related to human diseases that rely on the delivery of exogenous macromolecules to the cells. Such strategies, however, may not be applicable to proteins that are sensitive to the external environment or prone to aggregate and can introduce artifacts during protein purification or delivery. As a complementary approach, direct protein expression for in-cell NMR in human cells was developed. This strategy is especially useful when studying processes like protein folding, maturation, and post-translational modification, starting right after protein synthesis. Compared with the protein expression techniques in mammalian cells commonly used in cellular biology, the low sensitivity of NMR requires higher protein levels. Among the cell lines used for high-yield protein expression, the HEK293T cell line was chosen, as it can be efficiently transfected with a cost-effective reagent. A vector originally designed for secreted proteins allows high-level cytosolic protein expression. For isotopic labeling, commercially available or homemade labeled media are employed. Uniform or amino acid type-selective labeling strategies are possible. Protein expression can be targeted to specific organelles (e.g., mitochondria), allowing for in organello NMR applications. A variant of the approach was developed that allows the sequential expression of two or more proteins, with only one selectively labeled. Protein expression in HEK293T cells was applied to recapitulate the maturation steps of intracellular superoxide dismutase 1 (SOD1) and to study the effect of mutations linked to familial amyotrophic lateral sclerosis (fALS) by in-cell NMR. Intracellular wild-type SOD1 spontaneously binds zinc, while it needs the copper chaperone for superoxide dismutase (CCS) for copper delivery and disulfide bond formation. Some fALS-linked mutations impair zinc binding and cause SOD1 to irreversibly unfold, likely forming the precursor of cytotoxic aggregates. The SOD-like domain of CCS acts as a molecular chaperone toward mutant SOD1, stabilizing its folding and allowing zinc binding and correct maturation. Changes in protein redox state distributions can also be investigated by in-cell NMR. Mitochondrial proteins require the redox-regulating partners glutaredoxin 1 (Grx1) and thioredoxin (Trx) to remain in the reduced, import-competent state in the cytosol, whereas SOD1 requires CCS for disulfide bond formation. In both cases, the proteins do not equilibrate with the cytosolic redox pool. Cysteine oxidation in response to oxidative stress can also be monitored. In the near future, in-cell NMR in human cells will likely benefit from technological advancements in NMR hardware, the development of bioreactor systems for increased sample lifetime, the application of paramagnetic NMR to obtain structural restraints, and advanced tools for genome engineering and should be increasingly integrated with advanced cellular imaging techniques.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Luchinat</LastName>
<ForeName>Enrico</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0003-4183-4311</Identifier>
<AffiliationInfo>
<Affiliation>Magnetic Resonance Center - CERM , University of Florence , 50019 Sesto Fiorentino, Italy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Experimental and Clinical Biomedical Sciences "Mario Serio" , University of Florence , 50134 Florence , Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Banci</LastName>
<ForeName>Lucia</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0003-0562-5774</Identifier>
<AffiliationInfo>
<Affiliation>Magnetic Resonance Center - CERM , University of Florence , 50019 Sesto Fiorentino, Italy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Chemistry , University of Florence , 50019 Sesto Fiorentino , Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acc Chem Res</MedlineTA>
<NlmUniqueID>0157313</NlmUniqueID>
<ISSNLinking>0001-4842</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C114678">CCS protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491006">COX17 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C507282">MIA40 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033681">Mitochondrial Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000615243">Nitrogen-15</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000606290">SOD1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D000072105">Superoxide Dismutase-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.2.-</RegistryNumber>
<NameOfSubstance UI="C105131">PARK7 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.2.-</RegistryNumber>
<NameOfSubstance UI="D000071617">Protein Deglycase DJ-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C531617">Amyotrophic lateral sclerosis 1</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000690" MajorTopicYN="N">Amyotrophic Lateral Sclerosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007553" MajorTopicYN="N">Isotope Labeling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033681" MajorTopicYN="N">Mitochondrial Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071617" MajorTopicYN="N">Protein Deglycase DJ-1</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072105" MajorTopicYN="N">Superoxide Dismutase-1</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29869502</ArticleId>
<ArticleId IdType="doi">10.1021/acs.accounts.8b00147</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Luchinat, Enrico" sort="Luchinat, Enrico" uniqKey="Luchinat E" first="Enrico" last="Luchinat">Enrico Luchinat</name>
</noRegion>
<name sortKey="Banci, Lucia" sort="Banci, Lucia" uniqKey="Banci L" first="Lucia" last="Banci">Lucia Banci</name>
<name sortKey="Banci, Lucia" sort="Banci, Lucia" uniqKey="Banci L" first="Lucia" last="Banci">Lucia Banci</name>
<name sortKey="Luchinat, Enrico" sort="Luchinat, Enrico" uniqKey="Luchinat E" first="Enrico" last="Luchinat">Enrico Luchinat</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000249 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000249 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29869502
   |texte=   In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29869502" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020